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Abstract:  The flexoelectric effect is the consequence of the coupling of the large strain gradients and the 
electric polarization in dielectric materials. The large strain gradients appear near the material defects, 
especially at the crack tips, where the flexoelectric effect redistributes the stress field and influences the crack 
behaviour and formation. The flexoelectricity is the size dependent material property, which must be included 
in the governing equilibrium equations. The consequence of this fact is the more complicated form of the 
asymptotic solution at the crack tip than the asymptotic solution in the classical elasticity. The asymptotic 
solution at the crack tip in flexoelectric material contains four amplitude factors in the case of the mode I 
loading conditions. It is purpose of this contribution to derive the expressions of these amplitude factors as the 
functions of the stress intensity factor 𝐾!. The matched asymptotic expansions method is used to assess the 
amplitude factors. The crack process zone characterized by the size material parameter 𝑙 is chosen as the 
boundary layer. 
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1. Introduction 

The flexoelectric effect is the size dependent material property existing in all dielectric materials, see 
(Yudin, 2013) or (Zubko, 2013). The coupling of the large strain gradients and the electric polarization 
causes this effect near the material defects and consequently influences the distribution and evolution of 
the stress fields. The large strain gradients usually occur near the crack tip and therefore it is relevant to 
suppose that the crack formation and propagation are affected by the flexoelectricity in the dielectric 
materials, (Tian, 2022). An interesting finding in orthopedics is the self-repairing and remodeling 
mechanism of micro-cracks in human bones based on the flexoelectric effect, (Vasquez-Sancho, 2018) and 
(Nunez-Toldra, 2020). Despite many experimental studies of the flexoelectric effect near the crack tip, the 
detailed theoretical investigation of fracture process in flexoelectric solids is still missing. The reason for 
this research imbalance is the difficulty in the obtaining of the adequate solution of the partial differential 
equations of the fourth order which describe the equilibrium of the flexoelectric body. It is extremely 
difficult or impossible to find the analytical as well as numerical solution of the fracture problem in the 
solids with the size dependent and flexoelectric material properties. All these solutions are obtained under 
the simplified or weakened conditions, (Shu, 1999; Grenzelou, 2008; Tian, 2021) and (Repka, 2018). The 
strain gradient theory for elastic dielectrics was pioneered by Toupin (1962), the first continuum mechanics 
theory for flexoelectric solids was proposed by Mindlin (1968). The analytical solution shows that the 
singularity of stresses accounting the strain gradient effect near the crack tip is 𝑝 = −3/2. This singularity 
is significantly stronger than their counterparts in the classical fracture mechanics. On the other hand, there 
is no singularity of Cauchy stresses at the crack tip in the strain gradient elastic theory. It is proportional to 
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𝑝 = 1/2 and its structure is different from the classical stress field controlled by the stress intensity factor 
𝐾, (Kotoul, 2018; Tian, 2022). Based on the Toupin–Mindlin generalized continuum theory of dipolar 
gradient elasticity, (Georgiadis, 2003) and (Gourgiotis, 2009) derived the expressions for stress and 
displacement field at the crack tip in a micro-structured solid under remotely loading (plane strain loading 
for Mode I and II cracks, anti-plane shear loading for Mode III crack). It is noteworthy that the definition 
of the J-integral with strain gradient effects is also extended by Georgiadis (2003). Aravas (2009) also 
developed an asymptotic crack tip solution for a material that obeyed a special form of linear isotropic 
strain gradient elasticity. Mao (2015) performed an asymptotic analysis of the crack tip field in the 
flexoelectric solids, which is applied in the analysis discussed in this contribution. 

2. Governing equations 

It is considered an isotropic dielectric solid 𝛺	with flexoelectricity, whose energy density function 
𝑈(𝜺, ∇𝜺, 𝑷) depends on the infinitesimal strain tensor 𝜺, its gradient ∇𝜺 and the polarization vector field 𝑷. 
The Cauchy stress 𝝈 and the dipolar stress 𝝉 can be defined in variational manner 

 𝜎!" =
#$
#%!"

, 𝜏!"& =
#$

#'(#%"$)
 (1) 

and must satisfy the governing equilibrium equations, Mao (2015), 
  ∇ ⋅ (𝝈 − ∇ ⋅ 𝝉) = 0, (2) 

 −𝜖*∇+𝜑 + ∇ ⋅ 𝑷 = 0, (3) 

 𝑬 + ∇𝜑 = 0, (4) 
where the body force per volume is omitted, 𝜖* is permittivity of vacuum, 𝑬 is electric field and 𝜑 is electric 
potential. The isotropic flexoelectric solid is characterized by the Lamé coefficients 𝜆 and 𝜇, the Poisson 
ratio 𝜈, the length scale parameter 𝑙, two flexoelectric constants 𝑓, and 𝑓+, the dielectric permittivity 𝜖 and 
by the dependency of the polarization vector field 𝑷 on the strain gradients ∇𝜺. Consequently, the 
constitutive equations are given as 
 𝝈 = 𝜆Tr(𝜺)𝑰 + 2𝜇𝜺, (5) 

 𝑷 = 𝑎-,[𝑬 − 𝑓,∇Tr(𝜺) − 2𝑓+∇ ⋅ 𝜺], (6) 

 𝝉 = 𝑙+∇𝝈 + 𝑓,G𝑷𝒆!𝒆" + 𝑷𝒆"𝒆"I + 𝑓+G𝒆!𝒆!𝑷 + 𝒆"𝒆"𝑷I + 𝑓+G𝒆!𝑷𝒆! + 𝒆"𝑷𝒆"I, (7) 

The basis vectors 𝒆! and 𝒆" represent the basis of Cartesian or polar coordinate system and 𝑎 is reciprocal 
susceptibility constant given by the relation 
 𝑎-, = 𝜖 − 𝜖*, (8) 

The governing equations admit following natural boundary conditions 
 𝒏 ⋅ (𝝈 − ∇ ⋅ 𝝉) − ∇K ⋅ (𝒏 ⋅ 𝝉) + G∇K ⋅ 𝒏I𝒏 ⋅ (𝒏 ⋅ 𝝉) = 𝒕	on	𝜕𝛺. , (9) 

 𝒏 ⋅ (𝒏 ⋅ 𝝉) = 𝒓	on	𝜕𝛺/ , (10) 

 𝒏 ⋅ (𝜖*𝑬 + 𝑷) = 𝜔	on	𝜕𝛺0, (11) 

where 𝒕 is the auxiliary force traction, 𝒓 is the double force traction, 𝜔 is surface charge, 𝒏 is the external 
normal to the boundary 𝜕𝛺 and ∇K= (𝐼 − 𝒏𝒏) ⋅ ∇. It is also practical to introduce non-dimensional 
parameters 

 𝛼 = !"
"√$%

, 𝛽 = !#&'!"
"√$%

 (12)  

3. Matched asymptotic expansions 

The following fracture problem assumes the existence of the crack of the length 2𝐿 in the dielectric material 
which is under the mode 𝐼 mechanical loading conditions. The so-called outer solution is the singular 
asymptotic solution of this problem at the crack tips characterized by the stress intensity factor 𝐾1. There  
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Fig. 1: The crack tip opening displacements 𝑢2 (left) and the stress 𝜎22 in front of the crack tip (right) 

for LELM and flexoelectric material. 

are also domains with characteristic dimensions 𝑙 ≪ 𝐿 at the crack tips, where the strain gradients prevail 
and couple with electric polarization. The flexoelectric effect must be considered in these small domains, 
where the dielectric continuum is governed by the equilibrium equations (2)-(4) and the following boundary 
conditions along the crack faces 
 𝒕(𝑟, 𝜃) = 𝒓(𝑟, 𝜃) = ω(0, 𝜃) = 0	for	𝜃 = ±π, (13) 

where (𝑟, 𝜃) is the polar coordinate system introduced at the crack tip. The boundary conditions (13) and 
equilibrium equations (2)-(4) allow one to derive the so-called inner asymptotic solution for the Cauchy 
stress 𝝈 whose radial and tangential components are as follows 

𝜎//!3 = 2𝛤,(𝜆 + 𝜇) + 2𝛤+ cos 2𝜃 + 2𝛤4𝜇 sin 2𝜃 + 𝛿,/+	𝑅,/+ bc𝐴, e
6
+
𝜆 + 3𝜇f + 𝐴7

,
+
𝜆g cos ,

+
𝜃 +

𝐴4 c
,
+
𝜆(3𝑙,+ + 5) + 3𝜇g cos

4
+
𝜃 + 3𝐴+𝜇 cos

6
+
𝜃i,  (14) 

 𝜎/8
!3 = 2𝜇(−𝛤+ sin 2𝜃 + 𝛤4 cos 2𝜃) + 𝛿,/+𝑅,/+ b

,
+
𝜇(−𝐴, + 𝐴7) sin

,
+
𝜃 − 3𝐴+𝜇 sin

6
+
𝜃 − ,

+
𝐴4𝜇(−𝑙,+ +

3) sin 4
+
𝜃i,  (15) 

where 𝑙,+ is non-dimensional parameter depending on flexoelectric constants. The inner domain represents 
the crack process zone 𝑟 ≪ 𝑙, in which the flexoelectric effects are appeared due to the dominancy of the 
strain gradients. The inner domain can be characterized by the non-dimensional parameter 𝛿 = 𝑙/𝐿 ≪ 1 
and the scaled coordinate system (𝑅, 𝜃) ≡ (𝑟𝛿-,, 𝜃) allowing the evaluation of the amplitude factors 𝐴,-
𝐴7 as the functions of the stress intensity factor 𝐾1. The strain gradients and dipolar stress 𝝉 decrease to 
zero value with the increasing distance 𝑟 from the crack tip. Consequently, the auxiliary force traction (9) 
converges to the standard traction vector 𝒕 = 𝒏 ⋅ 𝝈. The double force tractions (10) and surface charge (11) 
disappear. Hence in the case of the circular shaped remote boundary of the outer domain (𝑅 → 𝑙𝛿-, = 𝐿) 
as well as the near crack tip boundary of the inner domain (𝑟 → 𝑙), the following equalities can be 
considered 
 𝒕9:.|/;< 	≈ 𝒕!3o=;<>%&;? ⇒ 𝜎//9:.|/;< ≈ −𝜎//!3o=;<>%&;? , 𝜎/8

9:.o/;< ≈ −𝜎/8
!3o=;<>%&;?. (16) 

The substitution (14) and (15) into (16) leads to the overdetermined system of algebraic equations with 
unknowns 𝐴,-𝐴7. This system gives unique solution for 𝐴,, 𝐴4 and 𝐴7. The magnitude of amplitude factor 
𝐴+ oscillates between two opposite values 

 𝐴, = − @'

(+B)
&
(

D-6E
,+<E(DFE)

, 𝐴+ = ± @'
(+B)&/(	

<&((4DFE)F6DF4E
,+<EH<&((+,%-)F6DFIEJ

,  (17) 

 𝐴4 = − @'
(+B)&/(

,
<[<&((4D-E)F6DFIE]

, 𝐴7 =
@'

(+B)&/(
6DF,,E
,+E<(DFE)

 (18)  

The parameters 𝛤,, 𝛤+ and 𝛤4 depends on the finite values of the Cauchy stress 𝝈 at the crack tips. These 
values are unavailable and must be assessed from the values of 𝝈9:. near the crack tip, e.g. in the distance 
𝑟 = 𝑙 and 𝜃 = 0. 
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4. Numerical results 

It is considered the dielectric material with 𝛼 = −0.572 and 𝛽 = −0.499. Figure 1 shows the crack 
opening displacements 𝑢2 and the Cauchy stress 𝜎22 in front of crack tip for varying parameter 𝛿, 2𝛿/3 
and 𝛿/3, where 𝛿 = 1 × 10-4. The dark lines represent the inner solutions which consider the flexoelectric 
effect in the crack process zone with dimension 𝑙. The top and bottom line of each inner solution correspond 
to ±𝐴+, respectively. The minimal influence of the amplitude factor 𝐴+ on the stress and displacement field 
at the crack tip is obvious. The gray lines represent outer solutions corresponding to the negligible influence 
of strain gradients and consequently no flexoelectric effects. The LEFM solution for 𝛿 = 0 is also depicted 
as the grey thick line. It can be seen good transition between the outer and the inner solution inside the 
boundary layers 𝑥/𝑙 ∼ 1, 2/3	and	1/3. 

5. Conclusions  

The contribution discussed the procedure of the assessment of the amplitude factors appearing in the 
asymptotic solution of the crack in the flexoelectric solid. The amplitude factors are evaluated under the 
assumption of the knowledge of the stress intensity factor 𝐾1 representing the classical solution of LEFM. 
There are many ways to redistribute 𝐾1 among four amplitude factors appearing in the asymptotic 
flexoelectric solution and the used matched asymptotic expansion method seems to be applicable tool to 
get the relevant result 
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